825.

Trigonometrijski i eksponencijalni oblik

TEKST ZADATKA

Izračunati:

8i3\sqrt[3]{-8i}

REŠENJE ZADATKA

Zapisati broj 8i-8i u eskponencijalnom obliku z=zeφiz=|z|\cdot e^{\varphi \cdot i}

8eπ2i3\sqrt[3]{8e^{-\frac{\pi}2i}}

Primena formule za n-ti koren kompleksnog broja: zk=zn  eφ+2kπn, k{0,1,2,...,n1}z_k=\sqrt[n]{|z|} \ \cdot \ e^{\frac{\varphi+2k\pi}{n}}, \ k\in\{0, 1, 2, ..., n-1 \}

83 eπ2+2kπ3i2 eπ2+2kπ3i,k{0,1,2}\sqrt[3]{8}\ e^{\frac{-\frac{\pi}2+2k\pi}3i} \\ 2\ e^{\frac{-\frac{\pi}2+2k\pi}3i}, \quad k\in\{0,1,2\}

Izračunati konkretne vrednosti za k{0,1,2}.k \in\{0, 1, 2 \}.

z0=2 eπ2+20π3i=2eπ6iz1=2 eπ2+21π3i=2eπ2iz2=2 eπ2+22π3i=2e7π6iz_0=2\ e^{\frac{-\frac{\pi}2+2\cdot0\cdot\pi}3i}=2e^{-\frac{\pi}{6}i} \\ z_1=2\ e^{\frac{-\frac{\pi}2+2\cdot1\cdot\pi}3i}=2e^{\frac{\pi}{2}i} \\ z_2=2\ e^{\frac{-\frac{\pi}2+2\cdot2\cdot\pi}3i}=2e^{\frac{7\pi}6i}

Pretvoriti rešenja u algebarski oblik.

z0=2(cos(π6)+isin(π6))=3iz1=2(cos(π2)+isin(π2))=2iz2=2(cos(7π6)+isin(7π6))=3iz_0=2(\cos{(-\frac{\pi}{6})}+i\sin{(-\frac{\pi}{6})})=\sqrt{3}-i\\ z_1=2(\cos{(\frac{\pi}{2})}+i\sin{(\frac{\pi}{2})})=2i\\ z_2=2(\cos{(\frac{7\pi}{6})}+i\sin{(\frac{7\pi}{6})})=-\sqrt{3}-i\\

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti