835.

Trigonometrijski i eksponencijalni oblik

TEKST ZADATKA

Odrediti sve kompleksne brojeve zz za koje važi:

z2=1i3z^2=1-i\sqrt3

REŠENJE ZADATKA
z=1i32z=\sqrt[2]{1-i\sqrt{3}}

Zapisati broj 1i31-i\sqrt3 u trigonometrijskom obliku : z=z(cos(arg(z))+isin(arg(z))).z=|z|\cdot(\cos{(\text{arg}(z))}+i\sin{(\text{arg}(z))}).

1i3=2(cos(π3)+isin(π3))1-i\sqrt3=2\big(\cos{(-\frac{\pi}3)}+i\sin{(-\frac{\pi}3)}\big)
DODATNO OBJAŠNJENJE

Primeniti formulu za korenovanje kompleksnog broja: zn(cosarg(z)+2kπn+isinarg(z)+2kπn),k{0,1,...,n1}\sqrt[n]{|z|} \cdot (\cos{\frac{\text{arg}(z)+2k\pi}{n}}+i\sin{\frac{\text{arg}(z)+2k\pi}{n}}), \quad k\in\{0, 1, ...,n-1\}

2(cosπ3+2kπ2+isinπ3+2kπ2),k{0,1}\sqrt{2}\cdot (\cos{\frac{-\frac{\pi}{3}+2k\pi}{2}} + i\sin{\frac{-\frac{\pi}{3}+2k\pi}{2}} ), \quad k \in \{ 0,1 \}

Za k=0:k=0:

z0=2(cosπ3+20π2+isinπ3+20π2)z0=2(cos(π6)+isin(π6))z0=2(3212i)z0=22(3i)z_0=\sqrt{2}\cdot (\cos{\frac{-\frac{\pi}{3}+2\cdot 0 \cdot \pi}{2}} + i\sin{\frac{-\frac{\pi}{3}+2\cdot 0 \cdot \pi}{2}} ) \\ z_0=\sqrt{2}\cdot (\cos{(-\frac{\pi}{6})} + i\sin{(-\frac{\pi}{6})} ) \\ z_0=\sqrt{2} \cdot (\frac{\sqrt{3}}{2}-\frac{1}{2}i)\\ z_0=\frac{\sqrt{2}}{2}(\sqrt{3}-i)

Za k=1:k=1:

z1=2(cosπ3+21π2+isinπ3+21π2)z1=2(cos(ππ6)+isin(ππ6))z1=2(32+12i)z1=22(3+i)z_1=\sqrt{2}\cdot (\cos{\frac{-\frac{\pi}{3}+2\cdot 1 \cdot \pi}{2}} + i\sin{\frac{-\frac{\pi}{3}+2\cdot 1 \cdot \pi}{2}} ) \\ z_1=\sqrt{2}\cdot (\cos{(\pi-\frac{\pi}{6})} + i\sin{(\pi-\frac{\pi}{6})} ) \\ z_1=\sqrt{2} \cdot (-\frac{\sqrt{3}}{2}+\frac{1}{2}i)\\ z_1=\frac{\sqrt{2}}{2}(-\sqrt{3}+i)

Rešenja jednačine su:

22(3i)i22(3+i)\frac{\sqrt{2}}{2}(\sqrt{3}-i) \quad \text{i} \quad \frac{\sqrt{2}}{2}(-\sqrt{3}+i)

Balkan Tutor Sva Prava Zadržana © 2025

Politika privatnosti